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Abstract: We study higher-order corrections to two BPS solutions of 5D supergravity,

namely the supersymmetric black ring and the spinning black hole. Due to our current

relatively limited understanding of F-type terms in 5D supergravity, the nature of these

corrections is less clear than that of their 4D cousins. Effects of certain R2 terms found

in Calabi-Yau compactification of M-theory are specifically considered. For the case of

the black ring, for which the microscopic origin of the entropy is generally known, the

corresponding higher order macroscopic correction to the entropy is found to match a mi-

croscopic correction, while for the spinning black hole the corrections are partially matched

to those of a 4D D0 − D2 − D6 black hole.
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1. Introduction

Recently a surprisingly powerful and precise relationship has emerged between higher di-

mension F-terms in the 4D effective action for N = 2 string theory (as captured by the

topological string [1]) and the (indexed) BPS black hole degeneracies [2, 3]. Even more

recently [4] a precise relationship has been conjectured between the 4D and 5D BPS black

hole degeneracies. This suggests that there should be a direct relationship between higher

dimension terms in the 5D effective action and 5D degeneracies which does not employ four

dimensions as an intermediate step. Five dimensions is in many ways simpler than four so

such a relation would be of great interest. It is the purpose of this paper to investigate this

issue.

The 4D story benefitted from a well understood superspace formulation [5, 6]. The

relevant supersymmetry-protected terms are integrals of chiral superfields over half of su-

perspace and can be classified. In 5D the situation is quite different (see e.g. [7]). There

is no superfield formulation and we do not have a general understanding of the possible

supersymmetry-protected terms. In general, the uplift to 5D of most of the 4D F-terms

vanishes. However, the area law cannot be the exact answer for the black hole entropy (for

one thing it doesn’t give integer numbers of microstates!) so there must be some kind of

perturbative supergravity corrections.

As a first step towards a more general understanding, in this paper we will study the

leading order entropy correction arising from R2 terms, which are proportional to the 4D

Euler density. Such terms give the one loop corrections in 4D, and - unlike the higher order

terms - do not vanish upon uplift to 5D. They are also of special interest as descendants of

the interesting 11D R4 terms [8, 9]. These terms correct the entropy of both the 5D black

ring [10] and the 5D BMPV spinning black hole [11]. We find that the macroscopic black
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ring correction matches, including the numerical coefficient, a correction expected from the

microscopic analysis of [12]. For the BMPV black hole, we find the correction matches, to

leading order, one expected from the 4D-5D relation conjectured in [4].

The next section derives the R2 corrections to the 5D entropy as horizon integrals of

curvature components using Wald’s formula. Section 3 evaluates this formula for the black

ring, while section 4 evaluates it for BMPV. Section 5 contains a brief summary.

2. Wald’s formula in 5D

In this section we will use Wald’s formula to derive an expression for R2 corrections to the

5D entropy.

The Einstein-frame low energy effective action for the compactification of M-theory on

a Calabi-Yau threefold CY3 down to five dimensions contains the terms [13]

I0+∆I =− 1

32π2

∫

d5x
√

|g5|R(5)− 1

29 · 3π2

∫

d5x
√

|g5|c2AY A(RαβµνRαβµν−4RαβRαβ+R2)

(2.1)

in units in which G5 = 2π (for compactification on a circle of unit radius, this choice leads

to G4 = 1 and hence facilitates 4D/5D comparisons). Here Y A, A = 1, . . . nV are scalar

components of vector multiplets. They are proportional to the Kähler moduli of CY3,

normalized so that

DABCY AY BY C = 1. (2.2)

c2A are the components of the second Chern class of CY3 and DABC the corresponding

intersection numbers. The R2 term in ∆I arises from dimensional reduction of the much

studied R4 term [8, 9] in eleven dimensions. It is also the uplift from four dimensions of an

F term whose coefficient is computed by the N = 2 topological string on CY3 at one loop

order [1].

When we add R2 corrections to the action the entropy is no longer given by the area

law; instead, we need to use the more general formula found by Wald [14]

SBH = 2π

∫

Hor

∂L
∂Rµνρσ

εµνερσ (2.3)

where, εαβ is the binormal to the horizon, defined as the exterior product of two null vectors

normal to the horizon and normalized so that εαβεαβ = −2. We can then identify two types

of first-order corrections implied by this formula:

• modifications to the area law due to the additional terms in the action - these terms

are evaluated using the zeroth order solutions for the metric and the other fields.

• modification of the area due to the change of the metric on the horizon, which follows

from the fact that adding extra terms to the action may change the equations of

motion.

In 4D, the second type of modification is absent at leading order for this particular

R2 form of ∆I obtained by reduction of (2.1) [15]. This and the 4D-5D agreement we find
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to leading order suggest that this may be the case in 5D as well. In order to understand

all R2 corrections to the entropy this should be ascertained by direct calculation. In the

following we consider only the first type of modification.

The corresponding correction to the entropy is then (see also [16])

∆S = −4πc2 · Y
29 · 3π2

∫

Hor
d3x

√
h ( Rµνρσεµνερσ − 4 Rµρgνσεµνερσ + Rεµνεµν) (2.4)

where h is the induced metric on the horizon and the moduli are fixed at their attractor

values. In the following we will evaluate this correction for the spinning black hole and

black ring solutions.

3. The black ring

The black ring solution was discovered in [10] and its entropy understood from a microscopic

perspective in [12]. It represents a supersymmetric solution to 5D supergravity coupled to

a number of abelian vector (and hyper)multiplets that describes a charged, rotating black

ring. It is characterized by electric charges qA, magnetic dipole charges pA, and the angular

momentum around the ring, Jψ. The macroscopic entropy formula for the black ring can

be written in the suggestive form

SBR = 2π

√

cLq̂0

6
(3.1)

where, in terms of the macroscopic charges,

cL = 6D = 6DABCpApBpC (3.2)

DABC being (one sixth) the intersection numbers of the Calabi-Yau, and

q̂0 = −Jψ +
1

12
DABqAqB +

cL

24
(3.3)

where DAB is the inverse of DAB ≡ DABCpC . The microscopic origin of the entropy is from

the quantum degeneracy of a 2D CFT with central charge cL and left-moving momentum

q̂0 available for distribution among the oscillators. The last term in (3.3) is ascribed to the

left moving zero point energy.

3.1 Macroscopic entropy correction

Now we evaluate the correction to the black ring entropy induced by ∆I. Due to the 5D

attractor mechanism [17] the moduli take the horizon values

Y A =
pA

D
1
3

(3.4)
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Next, all we need to do is to find the binormal to the horizon for the black ring metric,

evaluate the relevant curvature terms at the horizon, and integrate. We obtain1

∆SBR =
π

6
c2 · p

√

q̂0

D
(3.5)

3.2 Microscopic entropy correction

The microscopic entropy comes from M5 branes wrapping 4 cycles associated to pA in CY3.

As shown in [15], these are described by a CFT with left-moving central charge

cL = 6D + c2 · p (3.6)

In [12] the leading entropy at large charges was microscopically computed using the leading

approximation (3.2) to cL at large charges. Subleading modifications should arise from

using the exact formula (3.6) in (3.1). This leads to

∆SBR =
π

6
c2 · p

√

q̂0

D
+

π

24
c2 · p

√

D

q̂0
+ . . . (3.7)

The first term comes from correcting cL in (3.1), while the second comes from correcting

the zero point shift in (3.3). We see that the macroscopic R2 correction matches precisely

the first term. We do not understand the matching of the second term, but note that it is

subleading in the regime q̂0 À D, where Cardy’s formula is valid.

4. The BMPV black hole

Let us now turn to BMPV - the charged rotating black hole in 5D characterized by electric

charges qA and angular momenta J in SU(2)L. Its leading macroscopic entropy is given by

SBMPV = 2π
√

Q3 − J2 (4.1)

where

Q
3
2 = DABCyAyByC (4.2)

where the yA’s are determined from

qA = 3DABCyByC (4.3)

1Note that in the following we have employed the following relationships between various quantities used

in this paper, in [10] and in [11]:

Q
eemr = (16πG)

2

3 µ
bmpv =

„

4G

π

« 2

3

q

q
eemr =

„

4G

π

« 1

3

p

J = Jeemr = 16πJbmpv = 4π
2
µω

The value of Newton’s constant used in [11] is G5 = (16π)−1, so we needed to rescale their metric by

(16πG)
2

3 in order to get ours. Also recall we are setting G = 2π in the text.
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We find the correction to this entropy following from the application of Wald’s formula

to (2.1) to be

∆SBMPV = − π

24

√

Q3 − J2 c2 · Y
(

− 3

Q
− J2

Q4

)

=
π

6
A c2 · Y

(

1

Q
− A2

4Q4

)

(4.4)

where we defined A =
√

Q3 − J2 and the moduli fields take the horizon values2

Y A =
yA

Q
1
2

(4.5)

In general, the microscopic origin of the entropy for the 5D spinning black holes in M-theory

on CY3 (unlike for black rings) is not known,3 so we will not try herein to understand the

microscopic origin of ∆SBMPV. We will however compare it to corresponding corrections

in 4D and the topological string partition function. As argued in [4], the exact 5D BMPV

entropy is equal to the entropy of the D6−D2−D0 system in 4D, with the same 2-brane

charges qA, D6-brane charge p0 = 1, and D0-brane charge q0 = 2J . In the same paper,

the following relationship for the partition functions of 5D black holes, 4D black holes and

consequently of the topological string - see [3] -was conjectured

Z5D(φA, µ) = Z4D(φA, φ0 =
µ

2
+ iπ) =

∣

∣

∣

∣

Ztop

(

gtop =
8π2

µ
, tA =

2φA

µ

)∣

∣

∣

∣

2

(4.6)

where φA are the electric potentials conjugate to qA, while φ0 is conjugate to q0 in 4D, and

Reµ = (µ+2πi) to J in 5D. The absolute value in the last expression is defined by keeping

φ0 real. With this in mind, we can start from Ftop - the topological string amplitude- and

compute the entropy of the BMPV (including first order corrections) as follows. Up to

one-loop order Ftop is

Ftop =
i(2π)3

g2
top

DABCtAtBtC − iπ

12
c2AtA (4.7)

=
i

π

DABCφAφBφC

µ
− iπ

6

c2AφA

µ

The entropy of the black hole is given by the Legendre transform of

F(φA, Reµ) = ln ZBH = Ftop + F̄top (4.8)

To first order we have

F = − 1

π2

DABCφAφBφC − π2

6 c2AφA

(Reµ
2π

)2 + 1
(4.9)

2From now on we will take ‘Y A’ to mean the horizon value of the modulus field Y A.
3It is of course known for N = 4 compactifications [18, 11], so it would be interesting to interpret the

macroscopic correction for that case.
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which gives

qA =
1

π2

3DABCφBφC − π2

6 c2A

(Reµ
2π

)2 + 1
(4.10)

J = −Reµ

2π4

DABCφAφBφC − π2

6 c2AφA

(

(Reµ
2π

)2 + 1
)2

and therefore

S = 2π
√

Q3 − J2(1 +
1

12

c2AY A

Q
+ . . .) (4.11)

where the . . . stand for higher order corrections in |gtop|2 = 16π2A2/Q3.

We see that the 5D R2 corrections (4.4) to the entropy do not exactly match the 4D

corrections (4.11). This is possible of course because dimensional reduction of the 5D R2

gives the 4D R2 term plus more terms involving 4D field strengths. However we also see

that the mismatch is subleading in the expansion in gtop, and we can therefore conclude

that the 5D R2 term captures the subleading correction to the area law.

5. Summary

We have shown that higher dimension corrections to the 5D effective action do give cor-

rections to the black hole/black ring entropy just as in 4D, but that the 5D situation is

currently under much less control than the 4D one. Some leading order computations were

performed and found to give a partial match between macroscopic and microscopic results.

We hope these computations will provide useful data for finishing the 5D macro/micro

story.

Note added in proof: We would like to draw attention to [19], which may explain the

matching of the subleading term in equation (3.7).
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